Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38383973

RESUMO

Rare genetic diseases are a group of life-threatening disorders affecting significant populations worldwide and posing substantial challenges to healthcare systems globally. India, with its vast population, is also no exception. The country harbors millions of individuals affected by these fatal disorders, which often result from mutations in a single gene. The emergence of CRISPR-Cas9 technology, however, has ushered in a new era of hope in genetic therapies. CRISPR-based treatments hold the potential to precisely edit and correct diseasecausing mutations, offering tailored solutions for rare genetic diseases in India. This review explores the landscape of rare genetic diseases in India along with national policies and major challenges, and examines the implications of CRISPR-based therapies for potential cure. It delves into the potential of this technology in providing personalized and effective treatments. However, alongside these promising prospects, some ethical considerations, regulatory challenges, and concerns about the accessibility of CRISPR therapies are also discussed since addressing these issues is crucial for harnessing the full power of CRISPR in tackling rare genetic diseases in India. By taking a multidisciplinary approach that combines scientific advancements, ethical principles, and regulatory frameworks, these complexities can be reconciled, paving the way for innovative and impactful healthcare solutions for rare diseases in India.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Doenças Raras/epidemiologia , Doenças Raras/genética , Doenças Raras/terapia , Terapia Genética , Índia
2.
Front Cell Neurosci ; 16: 1037903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713778

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the death of mid-brain dopaminergic neurons. Unfortunately, no effective cure or diagnostic biomarkers for PD are available yet. To address this, the present study focuses on brain-enriched small non-coding regulatory RNAs called microRNAs (miRNAs) that are released into the circulation packaged inside small extracellular vesicles called exosomes. We collected blood samples from PD patients and isolated exosomes from the plasma. qPCR-based detection revealed a particular neuron-enriched miR-128 to be significantly decreased in the patient-derived exosomes. Interestingly, a concomitant decreased expression of miR-128 was observed in the cellular models of PD. Fluorescent live cell imaging and flow-cytometry revealed that over-expression of miR-128 can prevent 6-OHDA-mediated mitochondrial superoxide production and induction of neuronal death respectively. This neuroprotective effect was found to be induced by miR-128-mediated inhibition of FoxO3a activation, a transcription factor involved in apoptosis. miR-128 over-expression also resulted in down-regulation of pro-apoptotic FoxO3a targets- FasL and PUMA, at both transcript and protein levels. Further downstream, miR-128 over-expression inhibited activation of caspases-8, -9 and -3, preventing both the intrinsic and extrinsic pathways of apoptosis. Additionally, over expression of miR-128 prevented down-regulation of synaptic proteins- Synaptophysin and PSD-95 and attenuated neurite shortening, thereby maintaining overall neuronal integrity. Thus, our study depicts the intracellular role of miR-128 in neuronal apoptosis and neurodegeneration and its implications as a biomarker being detectable in the circulating exosomes of PD patient blood. Thus, characterization of such exosomal brain-enriched miRNAs hold promise for effective detection and diagnosis of PD.

3.
Front Microbiol ; 11: 571553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072032

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus responsible for the current COVID-19 (coronavirus disease 2019) pandemic, which has hit the world since December 2019. It has spread to about 216 countries worldwide, affecting more than 21.7 million people so far. Although clinical trials of a number of promising antiviral drugs and vaccines against COVID-19 are underway, it is hard to predict how successful these drug- or vaccine-based therapeutics are eventually going to be in combating COVID-19 because most of such therapeutic strategies have failed against human coronaviruses such as SARS-CoV and MERS-CoV (Middle East respiratory syndrome coronavirus) responsible for similar pandemics in the past. In that context, we would like to bring to scientific attention another group of endogenous regulatory molecules, the small non-coding RNAs, especially the microRNAs, which are found to regulate critical cellular pathways in a number of disease conditions, including RNA viral infections. This review will focus on understanding the effect of altered microRNA expression during coronavirus-mediated infections and how it may provide clues for further exploring the pathogenesis of SARS-CoV-2, with a view of developing RNAi-based therapeutics and biomarkers against COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...